Review



rabbit polyclonal anti zo1 antibody  (Proteintech)


Bioz Verified Symbol Proteintech is a verified supplier  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 97

    Structured Review

    Proteintech rabbit polyclonal anti zo1 antibody
    hfNCSC-sEVs are taken up by PCs in vitro and enhance their proliferation and migration. (A) Primary cultures of hfNCSCs were established from male Sprague–Dawley rats. (B) Immunofluorescence staining of the neural crest cell marker p75 (red) and the stem cell marker nestin (green) in hfNCSCs, with 4′,6-diamidino-2-phenylindole (DAPI) staining indicating the nuclei. (C) Western blot analysis demonstrated the presence of surface markers (cluster of differentiation [CD]9, CD81, and tumor susceptibility gene 101 protein [TSG101]) and the absence of an endoplasmic reticulum marker (calnexin) in hfNCSC-sEVs. (D) Nanoparticle tracking analysis was used to quantify the concentration and size distribution of hfNCSC-sEVs. (E) Transmission electron microscopy was used to visualize the characteristic morphology of hfNCSC-sEVs. (F) Immunofluorescence staining indicated that the third-generation PCs cultured in vitro were positive for claudin-1, zonula occludens 1 <t>(ZO1),</t> and glucose transporter 1 (GLUT1) but negative for S100, with DAPI staining marking the nuclei. (G) The internalization of PKH26-labeled hfNCSC-sEVs (red) by ZO1-positive PCs (green) was visualized using immunofluorescence staining, with DAPI staining to mark the nuclei. (H) The Cell Counting Kit-8 assay was used to evaluate the cell viability of PCs across concentrations of 0, 2 × 10 8 , 5 × 10 8 , and 10 × 10 8 particles/mL hfNCSC-sEVs at 3, 5, and 7 days of in vitro culture ( n = 5 per group). (I) The Transwell assay was used to quantify the number of migrating PCs at 6, 12, and 18 hours post-treatment with the aforementioned concentrations of hfNCSC-sEVs, in in vitro culture ( n = 6 per group). (J) Western blot and (K) statistical analyses revealed the relative protein expression levels of proliferating cell nuclear antigen (PCNA) and vimentin in PCs from the phosphate-buffered saline (PBS) and hfNCSC-sEVs groups on day 5 of in vitro culture (normalized to β-actin, n = 3 per group). Data are expressed as the mean ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001 (one-way analysis of variance and Tukey’s multiple comparison test for H and I; Student’s t -test for K). The data were from at least three separate and independent studies. CCK-8: Cell counting kit-8; GLUT1: glucose transporter 1; hfNCSCs: hair follicle neural crest stem cells; ns: not significant; PCNA: proliferating cell nuclear antigen; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.
    Rabbit Polyclonal Anti Zo1 Antibody, supplied by Proteintech, used in various techniques. Bioz Stars score: 97/100, based on 2475 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rabbit polyclonal anti zo1 antibody/product/Proteintech
    Average 97 stars, based on 2475 article reviews
    rabbit polyclonal anti zo1 antibody - by Bioz Stars, 2026-02
    97/100 stars

    Images

    1) Product Images from "Small extracellular vesicles derived from hair follicle neural crest stem cells enhance perineurial cell proliferation and migration via the TGF-β/SMAD/HAS2 pathway"

    Article Title: Small extracellular vesicles derived from hair follicle neural crest stem cells enhance perineurial cell proliferation and migration via the TGF-β/SMAD/HAS2 pathway

    Journal: Neural Regeneration Research

    doi: 10.4103/NRR.NRR-D-25-00127

    hfNCSC-sEVs are taken up by PCs in vitro and enhance their proliferation and migration. (A) Primary cultures of hfNCSCs were established from male Sprague–Dawley rats. (B) Immunofluorescence staining of the neural crest cell marker p75 (red) and the stem cell marker nestin (green) in hfNCSCs, with 4′,6-diamidino-2-phenylindole (DAPI) staining indicating the nuclei. (C) Western blot analysis demonstrated the presence of surface markers (cluster of differentiation [CD]9, CD81, and tumor susceptibility gene 101 protein [TSG101]) and the absence of an endoplasmic reticulum marker (calnexin) in hfNCSC-sEVs. (D) Nanoparticle tracking analysis was used to quantify the concentration and size distribution of hfNCSC-sEVs. (E) Transmission electron microscopy was used to visualize the characteristic morphology of hfNCSC-sEVs. (F) Immunofluorescence staining indicated that the third-generation PCs cultured in vitro were positive for claudin-1, zonula occludens 1 (ZO1), and glucose transporter 1 (GLUT1) but negative for S100, with DAPI staining marking the nuclei. (G) The internalization of PKH26-labeled hfNCSC-sEVs (red) by ZO1-positive PCs (green) was visualized using immunofluorescence staining, with DAPI staining to mark the nuclei. (H) The Cell Counting Kit-8 assay was used to evaluate the cell viability of PCs across concentrations of 0, 2 × 10 8 , 5 × 10 8 , and 10 × 10 8 particles/mL hfNCSC-sEVs at 3, 5, and 7 days of in vitro culture ( n = 5 per group). (I) The Transwell assay was used to quantify the number of migrating PCs at 6, 12, and 18 hours post-treatment with the aforementioned concentrations of hfNCSC-sEVs, in in vitro culture ( n = 6 per group). (J) Western blot and (K) statistical analyses revealed the relative protein expression levels of proliferating cell nuclear antigen (PCNA) and vimentin in PCs from the phosphate-buffered saline (PBS) and hfNCSC-sEVs groups on day 5 of in vitro culture (normalized to β-actin, n = 3 per group). Data are expressed as the mean ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001 (one-way analysis of variance and Tukey’s multiple comparison test for H and I; Student’s t -test for K). The data were from at least three separate and independent studies. CCK-8: Cell counting kit-8; GLUT1: glucose transporter 1; hfNCSCs: hair follicle neural crest stem cells; ns: not significant; PCNA: proliferating cell nuclear antigen; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.
    Figure Legend Snippet: hfNCSC-sEVs are taken up by PCs in vitro and enhance their proliferation and migration. (A) Primary cultures of hfNCSCs were established from male Sprague–Dawley rats. (B) Immunofluorescence staining of the neural crest cell marker p75 (red) and the stem cell marker nestin (green) in hfNCSCs, with 4′,6-diamidino-2-phenylindole (DAPI) staining indicating the nuclei. (C) Western blot analysis demonstrated the presence of surface markers (cluster of differentiation [CD]9, CD81, and tumor susceptibility gene 101 protein [TSG101]) and the absence of an endoplasmic reticulum marker (calnexin) in hfNCSC-sEVs. (D) Nanoparticle tracking analysis was used to quantify the concentration and size distribution of hfNCSC-sEVs. (E) Transmission electron microscopy was used to visualize the characteristic morphology of hfNCSC-sEVs. (F) Immunofluorescence staining indicated that the third-generation PCs cultured in vitro were positive for claudin-1, zonula occludens 1 (ZO1), and glucose transporter 1 (GLUT1) but negative for S100, with DAPI staining marking the nuclei. (G) The internalization of PKH26-labeled hfNCSC-sEVs (red) by ZO1-positive PCs (green) was visualized using immunofluorescence staining, with DAPI staining to mark the nuclei. (H) The Cell Counting Kit-8 assay was used to evaluate the cell viability of PCs across concentrations of 0, 2 × 10 8 , 5 × 10 8 , and 10 × 10 8 particles/mL hfNCSC-sEVs at 3, 5, and 7 days of in vitro culture ( n = 5 per group). (I) The Transwell assay was used to quantify the number of migrating PCs at 6, 12, and 18 hours post-treatment with the aforementioned concentrations of hfNCSC-sEVs, in in vitro culture ( n = 6 per group). (J) Western blot and (K) statistical analyses revealed the relative protein expression levels of proliferating cell nuclear antigen (PCNA) and vimentin in PCs from the phosphate-buffered saline (PBS) and hfNCSC-sEVs groups on day 5 of in vitro culture (normalized to β-actin, n = 3 per group). Data are expressed as the mean ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001 (one-way analysis of variance and Tukey’s multiple comparison test for H and I; Student’s t -test for K). The data were from at least three separate and independent studies. CCK-8: Cell counting kit-8; GLUT1: glucose transporter 1; hfNCSCs: hair follicle neural crest stem cells; ns: not significant; PCNA: proliferating cell nuclear antigen; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.

    Techniques Used: In Vitro, Migration, Immunofluorescence, Staining, Marker, Western Blot, Concentration Assay, Transmission Assay, Electron Microscopy, Cell Culture, Labeling, Cell Counting, Transwell Assay, Expressing, Saline, Comparison, CCK-8 Assay

    hfNCSC-sEVs enhance tube formation and barrier function in PCs and promote tight junction protein expression. (A) Optical micrographs of the tube formation assay and (B) statistical analyses demonstrated the number of junctions and total length of tubes in PCs in both the phosphate-buffered saline (PBS) and hfNCSC-sEVs groups ( n = 5 per group). (C) Measurements of transmembrane resistance ( n = 3 per group) and (D) cell monolayer permeability assays ( n = 9 per group) indicated the barrier formation ability of PCs in both the PBS and hfNCSC-sEVs groups. (E) Western blot and (F) statistical analyses revealed the relative protein expression levels of the tight junction proteins zonula occludens 1 (ZO1) and claudin-1 in PCs from the PBS and hfNCSC-sEVs groups on day 7 of in vitro culture (normalized to β-actin, n = 3 per group). (G, H) Immunofluorescence staining (G) and statistical analyses (H) showed the integrated optical density (IOD) of ZO1 (green) and the expression of β-tubulin (red) in PCs from the PBS and hfNCSC-sEVs groups on day 7 of in vitro culture ( n = 3 per group). (I) Schematic illustration of the rat sciatic nerve defect model: a 5-mm defect was surgically created in the rat sciatic nerve, which was then bridged using a silicon tube, followed by an orthotopic injection procedure. (J) Immunofluorescence staining revealed the expression of claudin-1 (red) in the proximal end of regenerated tissue in both the PBS and hfNCSC-sEVs groups on day 7 post-operation, with 4′,6-diamidino-2-phenylindole (DAPI) staining indicating the nuclei. Data are expressed as the mean ± SEM. * P < 0.05, *** P < 0.001 (Student’s t -test for B, C, D, F, and H). The data were from at least three separate and independent studies. hfNCSCs: Hair follicle neural crest stem cells; IOD: integrated optical density; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.
    Figure Legend Snippet: hfNCSC-sEVs enhance tube formation and barrier function in PCs and promote tight junction protein expression. (A) Optical micrographs of the tube formation assay and (B) statistical analyses demonstrated the number of junctions and total length of tubes in PCs in both the phosphate-buffered saline (PBS) and hfNCSC-sEVs groups ( n = 5 per group). (C) Measurements of transmembrane resistance ( n = 3 per group) and (D) cell monolayer permeability assays ( n = 9 per group) indicated the barrier formation ability of PCs in both the PBS and hfNCSC-sEVs groups. (E) Western blot and (F) statistical analyses revealed the relative protein expression levels of the tight junction proteins zonula occludens 1 (ZO1) and claudin-1 in PCs from the PBS and hfNCSC-sEVs groups on day 7 of in vitro culture (normalized to β-actin, n = 3 per group). (G, H) Immunofluorescence staining (G) and statistical analyses (H) showed the integrated optical density (IOD) of ZO1 (green) and the expression of β-tubulin (red) in PCs from the PBS and hfNCSC-sEVs groups on day 7 of in vitro culture ( n = 3 per group). (I) Schematic illustration of the rat sciatic nerve defect model: a 5-mm defect was surgically created in the rat sciatic nerve, which was then bridged using a silicon tube, followed by an orthotopic injection procedure. (J) Immunofluorescence staining revealed the expression of claudin-1 (red) in the proximal end of regenerated tissue in both the PBS and hfNCSC-sEVs groups on day 7 post-operation, with 4′,6-diamidino-2-phenylindole (DAPI) staining indicating the nuclei. Data are expressed as the mean ± SEM. * P < 0.05, *** P < 0.001 (Student’s t -test for B, C, D, F, and H). The data were from at least three separate and independent studies. hfNCSCs: Hair follicle neural crest stem cells; IOD: integrated optical density; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.

    Techniques Used: Expressing, Tube Formation Assay, Saline, Permeability, Western Blot, In Vitro, Immunofluorescence, Staining, Injection

    miR-21-5p in hfNCSC-sEVs augments cell proliferation and migration by enhancing HAS2 expression in PCs. (A, B) Western blot (A) and statistical analyses (B) revealed the relative protein expression levels of HAS2, proliferating cell nuclear antigen (PCNA), and vimentin in PCs across the –/–, –/si- Has2 , hfNCSC-sEVs/–, and hfNCSC-sEVs/si- Has2 groups on day 5 of in vitro culture (normalized to β-actin, n = 3 per group). (C, D) The wound healing assay (C) and statistical analysis (D) demonstrated the migration rates of PCs in the aforementioned groups ( n = 3 per group). (E) The Cell Counting Kit-8 assay was used to assess cell viability in PCs across the same groups on day 5 of in vitro culture ( n = 5 per group). (F, G) Western blot (F) and statistical analyses (G) indicated the relative protein expression levels of HAS2, PCNA, and vimentin in PCs treated with phosphate-buffered saline (PBS), hfNCSC-sEVs, or hfNCSC-sEVs + miR-21-5p inhibitor on day 5 of in vitro culture (normalized to β-actin, n = 3 per group). (H–J) Immunofluorescence staining visualized the expression of HAS2 (red) and 5-ethynyl-2′-deoxyuridine (EdU; green) in PCs (H), and statistical analysis revealed the integrated optical density (IOD) of zonula occludens 1 (ZO1; I) and the cell proliferation rates (J) in the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 5 of in vitro culture ( n = 3 per group). (K, L) Western blot (K) and statistical analyses (L) showed the relative protein expression levels of HAS2, PCNA, and vimentin in regenerated tissue from the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 5 post-operation (normalized to β-tubulin, n = 3 per group). Data are expressed as the mean ± SEM. ** P < 0.01, *** P < 0.001 (one-way analysis of variance and Tukey’s multiple comparison test for B, D, E, G, I, J, and L). The data were from at least three separate and independent studies. CCK-8: Cell counting kit-8; EdU: 5-ethynyl-2′-deoxyuridine; HAS2: hyaluronan synthase 2; hfNCSCs: hair follicle neural crest stem cells; IOD: integrated optical density; PCNA: proliferating cell nuclear antigen; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.
    Figure Legend Snippet: miR-21-5p in hfNCSC-sEVs augments cell proliferation and migration by enhancing HAS2 expression in PCs. (A, B) Western blot (A) and statistical analyses (B) revealed the relative protein expression levels of HAS2, proliferating cell nuclear antigen (PCNA), and vimentin in PCs across the –/–, –/si- Has2 , hfNCSC-sEVs/–, and hfNCSC-sEVs/si- Has2 groups on day 5 of in vitro culture (normalized to β-actin, n = 3 per group). (C, D) The wound healing assay (C) and statistical analysis (D) demonstrated the migration rates of PCs in the aforementioned groups ( n = 3 per group). (E) The Cell Counting Kit-8 assay was used to assess cell viability in PCs across the same groups on day 5 of in vitro culture ( n = 5 per group). (F, G) Western blot (F) and statistical analyses (G) indicated the relative protein expression levels of HAS2, PCNA, and vimentin in PCs treated with phosphate-buffered saline (PBS), hfNCSC-sEVs, or hfNCSC-sEVs + miR-21-5p inhibitor on day 5 of in vitro culture (normalized to β-actin, n = 3 per group). (H–J) Immunofluorescence staining visualized the expression of HAS2 (red) and 5-ethynyl-2′-deoxyuridine (EdU; green) in PCs (H), and statistical analysis revealed the integrated optical density (IOD) of zonula occludens 1 (ZO1; I) and the cell proliferation rates (J) in the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 5 of in vitro culture ( n = 3 per group). (K, L) Western blot (K) and statistical analyses (L) showed the relative protein expression levels of HAS2, PCNA, and vimentin in regenerated tissue from the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 5 post-operation (normalized to β-tubulin, n = 3 per group). Data are expressed as the mean ± SEM. ** P < 0.01, *** P < 0.001 (one-way analysis of variance and Tukey’s multiple comparison test for B, D, E, G, I, J, and L). The data were from at least three separate and independent studies. CCK-8: Cell counting kit-8; EdU: 5-ethynyl-2′-deoxyuridine; HAS2: hyaluronan synthase 2; hfNCSCs: hair follicle neural crest stem cells; IOD: integrated optical density; PCNA: proliferating cell nuclear antigen; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.

    Techniques Used: Migration, Expressing, Western Blot, In Vitro, Wound Healing Assay, Cell Counting, Saline, Immunofluorescence, Staining, Comparison, CCK-8 Assay

    miR-21-5p in hfNCSC-sEVs enhances tight junction protein expression in PCs. (A, B) Immunofluorescence staining (A) and statistical analysis (B) demonstrated IOD of ZO1 (green) and the expression of β-tubulin (red) in PCs across the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 7 of in vitro culture ( n = 3 per group). (C) Western blot and (D) statistical analyses revealed the relative protein expression levels of the tight junction proteins ZO1 and claudin-1 in PCs from the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 7 of in vitro culture (normalized to β-actin, n = 3 per group). (E) Immunofluorescence staining depicted the expression of claudin-1 (red) at the proximal end of regenerated tissue in the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 7 post-operation, with DAPI staining highlighting the nuclei. (F, G) Western blot (F) and statistical analyses (G) indicated the relative protein expression levels of ZO1 and claudin-1 in regenerated tissue across the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 7 post-operation (normalized to β-actin, n = 3 per group). Data are expressed as the mean ± SEM. ** P < 0.01, *** P < 0.001 (one-way analysis of variance and Tukey’s multiple comparison test for B, D, and G). The data were from at least three separate and independent studies. DAPI: 4,6-Diamidino-2-phenylindole; hfNCSCs: hair follicle neural crest stem cells; IOD: integrated optical density; PBS: phosphate-buffered saline; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.
    Figure Legend Snippet: miR-21-5p in hfNCSC-sEVs enhances tight junction protein expression in PCs. (A, B) Immunofluorescence staining (A) and statistical analysis (B) demonstrated IOD of ZO1 (green) and the expression of β-tubulin (red) in PCs across the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 7 of in vitro culture ( n = 3 per group). (C) Western blot and (D) statistical analyses revealed the relative protein expression levels of the tight junction proteins ZO1 and claudin-1 in PCs from the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 7 of in vitro culture (normalized to β-actin, n = 3 per group). (E) Immunofluorescence staining depicted the expression of claudin-1 (red) at the proximal end of regenerated tissue in the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 7 post-operation, with DAPI staining highlighting the nuclei. (F, G) Western blot (F) and statistical analyses (G) indicated the relative protein expression levels of ZO1 and claudin-1 in regenerated tissue across the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 7 post-operation (normalized to β-actin, n = 3 per group). Data are expressed as the mean ± SEM. ** P < 0.01, *** P < 0.001 (one-way analysis of variance and Tukey’s multiple comparison test for B, D, and G). The data were from at least three separate and independent studies. DAPI: 4,6-Diamidino-2-phenylindole; hfNCSCs: hair follicle neural crest stem cells; IOD: integrated optical density; PBS: phosphate-buffered saline; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.

    Techniques Used: Expressing, Immunofluorescence, Staining, In Vitro, Western Blot, Comparison, Saline



    Similar Products

    97
    Proteintech rabbit polyclonal anti zo1 antibody
    hfNCSC-sEVs are taken up by PCs in vitro and enhance their proliferation and migration. (A) Primary cultures of hfNCSCs were established from male Sprague–Dawley rats. (B) Immunofluorescence staining of the neural crest cell marker p75 (red) and the stem cell marker nestin (green) in hfNCSCs, with 4′,6-diamidino-2-phenylindole (DAPI) staining indicating the nuclei. (C) Western blot analysis demonstrated the presence of surface markers (cluster of differentiation [CD]9, CD81, and tumor susceptibility gene 101 protein [TSG101]) and the absence of an endoplasmic reticulum marker (calnexin) in hfNCSC-sEVs. (D) Nanoparticle tracking analysis was used to quantify the concentration and size distribution of hfNCSC-sEVs. (E) Transmission electron microscopy was used to visualize the characteristic morphology of hfNCSC-sEVs. (F) Immunofluorescence staining indicated that the third-generation PCs cultured in vitro were positive for claudin-1, zonula occludens 1 <t>(ZO1),</t> and glucose transporter 1 (GLUT1) but negative for S100, with DAPI staining marking the nuclei. (G) The internalization of PKH26-labeled hfNCSC-sEVs (red) by ZO1-positive PCs (green) was visualized using immunofluorescence staining, with DAPI staining to mark the nuclei. (H) The Cell Counting Kit-8 assay was used to evaluate the cell viability of PCs across concentrations of 0, 2 × 10 8 , 5 × 10 8 , and 10 × 10 8 particles/mL hfNCSC-sEVs at 3, 5, and 7 days of in vitro culture ( n = 5 per group). (I) The Transwell assay was used to quantify the number of migrating PCs at 6, 12, and 18 hours post-treatment with the aforementioned concentrations of hfNCSC-sEVs, in in vitro culture ( n = 6 per group). (J) Western blot and (K) statistical analyses revealed the relative protein expression levels of proliferating cell nuclear antigen (PCNA) and vimentin in PCs from the phosphate-buffered saline (PBS) and hfNCSC-sEVs groups on day 5 of in vitro culture (normalized to β-actin, n = 3 per group). Data are expressed as the mean ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001 (one-way analysis of variance and Tukey’s multiple comparison test for H and I; Student’s t -test for K). The data were from at least three separate and independent studies. CCK-8: Cell counting kit-8; GLUT1: glucose transporter 1; hfNCSCs: hair follicle neural crest stem cells; ns: not significant; PCNA: proliferating cell nuclear antigen; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.
    Rabbit Polyclonal Anti Zo1 Antibody, supplied by Proteintech, used in various techniques. Bioz Stars score: 97/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rabbit polyclonal anti zo1 antibody/product/Proteintech
    Average 97 stars, based on 1 article reviews
    rabbit polyclonal anti zo1 antibody - by Bioz Stars, 2026-02
    97/100 stars
      Buy from Supplier

    90
    Thermo Fisher rabbit polyclonal anti-zo1
    hfNCSC-sEVs are taken up by PCs in vitro and enhance their proliferation and migration. (A) Primary cultures of hfNCSCs were established from male Sprague–Dawley rats. (B) Immunofluorescence staining of the neural crest cell marker p75 (red) and the stem cell marker nestin (green) in hfNCSCs, with 4′,6-diamidino-2-phenylindole (DAPI) staining indicating the nuclei. (C) Western blot analysis demonstrated the presence of surface markers (cluster of differentiation [CD]9, CD81, and tumor susceptibility gene 101 protein [TSG101]) and the absence of an endoplasmic reticulum marker (calnexin) in hfNCSC-sEVs. (D) Nanoparticle tracking analysis was used to quantify the concentration and size distribution of hfNCSC-sEVs. (E) Transmission electron microscopy was used to visualize the characteristic morphology of hfNCSC-sEVs. (F) Immunofluorescence staining indicated that the third-generation PCs cultured in vitro were positive for claudin-1, zonula occludens 1 <t>(ZO1),</t> and glucose transporter 1 (GLUT1) but negative for S100, with DAPI staining marking the nuclei. (G) The internalization of PKH26-labeled hfNCSC-sEVs (red) by ZO1-positive PCs (green) was visualized using immunofluorescence staining, with DAPI staining to mark the nuclei. (H) The Cell Counting Kit-8 assay was used to evaluate the cell viability of PCs across concentrations of 0, 2 × 10 8 , 5 × 10 8 , and 10 × 10 8 particles/mL hfNCSC-sEVs at 3, 5, and 7 days of in vitro culture ( n = 5 per group). (I) The Transwell assay was used to quantify the number of migrating PCs at 6, 12, and 18 hours post-treatment with the aforementioned concentrations of hfNCSC-sEVs, in in vitro culture ( n = 6 per group). (J) Western blot and (K) statistical analyses revealed the relative protein expression levels of proliferating cell nuclear antigen (PCNA) and vimentin in PCs from the phosphate-buffered saline (PBS) and hfNCSC-sEVs groups on day 5 of in vitro culture (normalized to β-actin, n = 3 per group). Data are expressed as the mean ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001 (one-way analysis of variance and Tukey’s multiple comparison test for H and I; Student’s t -test for K). The data were from at least three separate and independent studies. CCK-8: Cell counting kit-8; GLUT1: glucose transporter 1; hfNCSCs: hair follicle neural crest stem cells; ns: not significant; PCNA: proliferating cell nuclear antigen; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.
    Rabbit Polyclonal Anti Zo1, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 90/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rabbit polyclonal anti-zo1/product/Thermo Fisher
    Average 90 stars, based on 1 article reviews
    rabbit polyclonal anti-zo1 - by Bioz Stars, 2026-02
    90/100 stars
      Buy from Supplier

    97
    Proteintech rabbit polyclonal anti zo1
    hfNCSC-sEVs are taken up by PCs in vitro and enhance their proliferation and migration. (A) Primary cultures of hfNCSCs were established from male Sprague–Dawley rats. (B) Immunofluorescence staining of the neural crest cell marker p75 (red) and the stem cell marker nestin (green) in hfNCSCs, with 4′,6-diamidino-2-phenylindole (DAPI) staining indicating the nuclei. (C) Western blot analysis demonstrated the presence of surface markers (cluster of differentiation [CD]9, CD81, and tumor susceptibility gene 101 protein [TSG101]) and the absence of an endoplasmic reticulum marker (calnexin) in hfNCSC-sEVs. (D) Nanoparticle tracking analysis was used to quantify the concentration and size distribution of hfNCSC-sEVs. (E) Transmission electron microscopy was used to visualize the characteristic morphology of hfNCSC-sEVs. (F) Immunofluorescence staining indicated that the third-generation PCs cultured in vitro were positive for claudin-1, zonula occludens 1 <t>(ZO1),</t> and glucose transporter 1 (GLUT1) but negative for S100, with DAPI staining marking the nuclei. (G) The internalization of PKH26-labeled hfNCSC-sEVs (red) by ZO1-positive PCs (green) was visualized using immunofluorescence staining, with DAPI staining to mark the nuclei. (H) The Cell Counting Kit-8 assay was used to evaluate the cell viability of PCs across concentrations of 0, 2 × 10 8 , 5 × 10 8 , and 10 × 10 8 particles/mL hfNCSC-sEVs at 3, 5, and 7 days of in vitro culture ( n = 5 per group). (I) The Transwell assay was used to quantify the number of migrating PCs at 6, 12, and 18 hours post-treatment with the aforementioned concentrations of hfNCSC-sEVs, in in vitro culture ( n = 6 per group). (J) Western blot and (K) statistical analyses revealed the relative protein expression levels of proliferating cell nuclear antigen (PCNA) and vimentin in PCs from the phosphate-buffered saline (PBS) and hfNCSC-sEVs groups on day 5 of in vitro culture (normalized to β-actin, n = 3 per group). Data are expressed as the mean ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001 (one-way analysis of variance and Tukey’s multiple comparison test for H and I; Student’s t -test for K). The data were from at least three separate and independent studies. CCK-8: Cell counting kit-8; GLUT1: glucose transporter 1; hfNCSCs: hair follicle neural crest stem cells; ns: not significant; PCNA: proliferating cell nuclear antigen; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.
    Rabbit Polyclonal Anti Zo1, supplied by Proteintech, used in various techniques. Bioz Stars score: 97/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rabbit polyclonal anti zo1/product/Proteintech
    Average 97 stars, based on 1 article reviews
    rabbit polyclonal anti zo1 - by Bioz Stars, 2026-02
    97/100 stars
      Buy from Supplier

    90
    Servicebio Inc anti-zo1 tight junction protein rabbit polyclonal antibody gb111402
    hfNCSC-sEVs are taken up by PCs in vitro and enhance their proliferation and migration. (A) Primary cultures of hfNCSCs were established from male Sprague–Dawley rats. (B) Immunofluorescence staining of the neural crest cell marker p75 (red) and the stem cell marker nestin (green) in hfNCSCs, with 4′,6-diamidino-2-phenylindole (DAPI) staining indicating the nuclei. (C) Western blot analysis demonstrated the presence of surface markers (cluster of differentiation [CD]9, CD81, and tumor susceptibility gene 101 protein [TSG101]) and the absence of an endoplasmic reticulum marker (calnexin) in hfNCSC-sEVs. (D) Nanoparticle tracking analysis was used to quantify the concentration and size distribution of hfNCSC-sEVs. (E) Transmission electron microscopy was used to visualize the characteristic morphology of hfNCSC-sEVs. (F) Immunofluorescence staining indicated that the third-generation PCs cultured in vitro were positive for claudin-1, zonula occludens 1 <t>(ZO1),</t> and glucose transporter 1 (GLUT1) but negative for S100, with DAPI staining marking the nuclei. (G) The internalization of PKH26-labeled hfNCSC-sEVs (red) by ZO1-positive PCs (green) was visualized using immunofluorescence staining, with DAPI staining to mark the nuclei. (H) The Cell Counting Kit-8 assay was used to evaluate the cell viability of PCs across concentrations of 0, 2 × 10 8 , 5 × 10 8 , and 10 × 10 8 particles/mL hfNCSC-sEVs at 3, 5, and 7 days of in vitro culture ( n = 5 per group). (I) The Transwell assay was used to quantify the number of migrating PCs at 6, 12, and 18 hours post-treatment with the aforementioned concentrations of hfNCSC-sEVs, in in vitro culture ( n = 6 per group). (J) Western blot and (K) statistical analyses revealed the relative protein expression levels of proliferating cell nuclear antigen (PCNA) and vimentin in PCs from the phosphate-buffered saline (PBS) and hfNCSC-sEVs groups on day 5 of in vitro culture (normalized to β-actin, n = 3 per group). Data are expressed as the mean ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001 (one-way analysis of variance and Tukey’s multiple comparison test for H and I; Student’s t -test for K). The data were from at least three separate and independent studies. CCK-8: Cell counting kit-8; GLUT1: glucose transporter 1; hfNCSCs: hair follicle neural crest stem cells; ns: not significant; PCNA: proliferating cell nuclear antigen; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.
    Anti Zo1 Tight Junction Protein Rabbit Polyclonal Antibody Gb111402, supplied by Servicebio Inc, used in various techniques. Bioz Stars score: 90/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/anti-zo1 tight junction protein rabbit polyclonal antibody gb111402/product/Servicebio Inc
    Average 90 stars, based on 1 article reviews
    anti-zo1 tight junction protein rabbit polyclonal antibody gb111402 - by Bioz Stars, 2026-02
    90/100 stars
      Buy from Supplier

    90
    Thermo Fisher rabbit anti-zo1 polyclonal antibody
    hfNCSC-sEVs are taken up by PCs in vitro and enhance their proliferation and migration. (A) Primary cultures of hfNCSCs were established from male Sprague–Dawley rats. (B) Immunofluorescence staining of the neural crest cell marker p75 (red) and the stem cell marker nestin (green) in hfNCSCs, with 4′,6-diamidino-2-phenylindole (DAPI) staining indicating the nuclei. (C) Western blot analysis demonstrated the presence of surface markers (cluster of differentiation [CD]9, CD81, and tumor susceptibility gene 101 protein [TSG101]) and the absence of an endoplasmic reticulum marker (calnexin) in hfNCSC-sEVs. (D) Nanoparticle tracking analysis was used to quantify the concentration and size distribution of hfNCSC-sEVs. (E) Transmission electron microscopy was used to visualize the characteristic morphology of hfNCSC-sEVs. (F) Immunofluorescence staining indicated that the third-generation PCs cultured in vitro were positive for claudin-1, zonula occludens 1 <t>(ZO1),</t> and glucose transporter 1 (GLUT1) but negative for S100, with DAPI staining marking the nuclei. (G) The internalization of PKH26-labeled hfNCSC-sEVs (red) by ZO1-positive PCs (green) was visualized using immunofluorescence staining, with DAPI staining to mark the nuclei. (H) The Cell Counting Kit-8 assay was used to evaluate the cell viability of PCs across concentrations of 0, 2 × 10 8 , 5 × 10 8 , and 10 × 10 8 particles/mL hfNCSC-sEVs at 3, 5, and 7 days of in vitro culture ( n = 5 per group). (I) The Transwell assay was used to quantify the number of migrating PCs at 6, 12, and 18 hours post-treatment with the aforementioned concentrations of hfNCSC-sEVs, in in vitro culture ( n = 6 per group). (J) Western blot and (K) statistical analyses revealed the relative protein expression levels of proliferating cell nuclear antigen (PCNA) and vimentin in PCs from the phosphate-buffered saline (PBS) and hfNCSC-sEVs groups on day 5 of in vitro culture (normalized to β-actin, n = 3 per group). Data are expressed as the mean ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001 (one-way analysis of variance and Tukey’s multiple comparison test for H and I; Student’s t -test for K). The data were from at least three separate and independent studies. CCK-8: Cell counting kit-8; GLUT1: glucose transporter 1; hfNCSCs: hair follicle neural crest stem cells; ns: not significant; PCNA: proliferating cell nuclear antigen; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.
    Rabbit Anti Zo1 Polyclonal Antibody, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 90/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rabbit anti-zo1 polyclonal antibody/product/Thermo Fisher
    Average 90 stars, based on 1 article reviews
    rabbit anti-zo1 polyclonal antibody - by Bioz Stars, 2026-02
    90/100 stars
      Buy from Supplier

    90
    Thermo Fisher rabbit polyclonal anti-zo1 #61-7300
    hfNCSC-sEVs are taken up by PCs in vitro and enhance their proliferation and migration. (A) Primary cultures of hfNCSCs were established from male Sprague–Dawley rats. (B) Immunofluorescence staining of the neural crest cell marker p75 (red) and the stem cell marker nestin (green) in hfNCSCs, with 4′,6-diamidino-2-phenylindole (DAPI) staining indicating the nuclei. (C) Western blot analysis demonstrated the presence of surface markers (cluster of differentiation [CD]9, CD81, and tumor susceptibility gene 101 protein [TSG101]) and the absence of an endoplasmic reticulum marker (calnexin) in hfNCSC-sEVs. (D) Nanoparticle tracking analysis was used to quantify the concentration and size distribution of hfNCSC-sEVs. (E) Transmission electron microscopy was used to visualize the characteristic morphology of hfNCSC-sEVs. (F) Immunofluorescence staining indicated that the third-generation PCs cultured in vitro were positive for claudin-1, zonula occludens 1 <t>(ZO1),</t> and glucose transporter 1 (GLUT1) but negative for S100, with DAPI staining marking the nuclei. (G) The internalization of PKH26-labeled hfNCSC-sEVs (red) by ZO1-positive PCs (green) was visualized using immunofluorescence staining, with DAPI staining to mark the nuclei. (H) The Cell Counting Kit-8 assay was used to evaluate the cell viability of PCs across concentrations of 0, 2 × 10 8 , 5 × 10 8 , and 10 × 10 8 particles/mL hfNCSC-sEVs at 3, 5, and 7 days of in vitro culture ( n = 5 per group). (I) The Transwell assay was used to quantify the number of migrating PCs at 6, 12, and 18 hours post-treatment with the aforementioned concentrations of hfNCSC-sEVs, in in vitro culture ( n = 6 per group). (J) Western blot and (K) statistical analyses revealed the relative protein expression levels of proliferating cell nuclear antigen (PCNA) and vimentin in PCs from the phosphate-buffered saline (PBS) and hfNCSC-sEVs groups on day 5 of in vitro culture (normalized to β-actin, n = 3 per group). Data are expressed as the mean ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001 (one-way analysis of variance and Tukey’s multiple comparison test for H and I; Student’s t -test for K). The data were from at least three separate and independent studies. CCK-8: Cell counting kit-8; GLUT1: glucose transporter 1; hfNCSCs: hair follicle neural crest stem cells; ns: not significant; PCNA: proliferating cell nuclear antigen; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.
    Rabbit Polyclonal Anti Zo1 #61 7300, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 90/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rabbit polyclonal anti-zo1 #61-7300/product/Thermo Fisher
    Average 90 stars, based on 1 article reviews
    rabbit polyclonal anti-zo1 #61-7300 - by Bioz Stars, 2026-02
    90/100 stars
      Buy from Supplier

    96
    Cell Signaling Technology Inc rabbit polyclonal anti zo1 d6l1e rabbit monoclonal antibody
    hfNCSC-sEVs are taken up by PCs in vitro and enhance their proliferation and migration. (A) Primary cultures of hfNCSCs were established from male Sprague–Dawley rats. (B) Immunofluorescence staining of the neural crest cell marker p75 (red) and the stem cell marker nestin (green) in hfNCSCs, with 4′,6-diamidino-2-phenylindole (DAPI) staining indicating the nuclei. (C) Western blot analysis demonstrated the presence of surface markers (cluster of differentiation [CD]9, CD81, and tumor susceptibility gene 101 protein [TSG101]) and the absence of an endoplasmic reticulum marker (calnexin) in hfNCSC-sEVs. (D) Nanoparticle tracking analysis was used to quantify the concentration and size distribution of hfNCSC-sEVs. (E) Transmission electron microscopy was used to visualize the characteristic morphology of hfNCSC-sEVs. (F) Immunofluorescence staining indicated that the third-generation PCs cultured in vitro were positive for claudin-1, zonula occludens 1 <t>(ZO1),</t> and glucose transporter 1 (GLUT1) but negative for S100, with DAPI staining marking the nuclei. (G) The internalization of PKH26-labeled hfNCSC-sEVs (red) by ZO1-positive PCs (green) was visualized using immunofluorescence staining, with DAPI staining to mark the nuclei. (H) The Cell Counting Kit-8 assay was used to evaluate the cell viability of PCs across concentrations of 0, 2 × 10 8 , 5 × 10 8 , and 10 × 10 8 particles/mL hfNCSC-sEVs at 3, 5, and 7 days of in vitro culture ( n = 5 per group). (I) The Transwell assay was used to quantify the number of migrating PCs at 6, 12, and 18 hours post-treatment with the aforementioned concentrations of hfNCSC-sEVs, in in vitro culture ( n = 6 per group). (J) Western blot and (K) statistical analyses revealed the relative protein expression levels of proliferating cell nuclear antigen (PCNA) and vimentin in PCs from the phosphate-buffered saline (PBS) and hfNCSC-sEVs groups on day 5 of in vitro culture (normalized to β-actin, n = 3 per group). Data are expressed as the mean ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001 (one-way analysis of variance and Tukey’s multiple comparison test for H and I; Student’s t -test for K). The data were from at least three separate and independent studies. CCK-8: Cell counting kit-8; GLUT1: glucose transporter 1; hfNCSCs: hair follicle neural crest stem cells; ns: not significant; PCNA: proliferating cell nuclear antigen; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.
    Rabbit Polyclonal Anti Zo1 D6l1e Rabbit Monoclonal Antibody, supplied by Cell Signaling Technology Inc, used in various techniques. Bioz Stars score: 96/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rabbit polyclonal anti zo1 d6l1e rabbit monoclonal antibody/product/Cell Signaling Technology Inc
    Average 96 stars, based on 1 article reviews
    rabbit polyclonal anti zo1 d6l1e rabbit monoclonal antibody - by Bioz Stars, 2026-02
    96/100 stars
      Buy from Supplier

    94
    Boster Bio rabbit polyclonal anti zo1
    hfNCSC-sEVs are taken up by PCs in vitro and enhance their proliferation and migration. (A) Primary cultures of hfNCSCs were established from male Sprague–Dawley rats. (B) Immunofluorescence staining of the neural crest cell marker p75 (red) and the stem cell marker nestin (green) in hfNCSCs, with 4′,6-diamidino-2-phenylindole (DAPI) staining indicating the nuclei. (C) Western blot analysis demonstrated the presence of surface markers (cluster of differentiation [CD]9, CD81, and tumor susceptibility gene 101 protein [TSG101]) and the absence of an endoplasmic reticulum marker (calnexin) in hfNCSC-sEVs. (D) Nanoparticle tracking analysis was used to quantify the concentration and size distribution of hfNCSC-sEVs. (E) Transmission electron microscopy was used to visualize the characteristic morphology of hfNCSC-sEVs. (F) Immunofluorescence staining indicated that the third-generation PCs cultured in vitro were positive for claudin-1, zonula occludens 1 <t>(ZO1),</t> and glucose transporter 1 (GLUT1) but negative for S100, with DAPI staining marking the nuclei. (G) The internalization of PKH26-labeled hfNCSC-sEVs (red) by ZO1-positive PCs (green) was visualized using immunofluorescence staining, with DAPI staining to mark the nuclei. (H) The Cell Counting Kit-8 assay was used to evaluate the cell viability of PCs across concentrations of 0, 2 × 10 8 , 5 × 10 8 , and 10 × 10 8 particles/mL hfNCSC-sEVs at 3, 5, and 7 days of in vitro culture ( n = 5 per group). (I) The Transwell assay was used to quantify the number of migrating PCs at 6, 12, and 18 hours post-treatment with the aforementioned concentrations of hfNCSC-sEVs, in in vitro culture ( n = 6 per group). (J) Western blot and (K) statistical analyses revealed the relative protein expression levels of proliferating cell nuclear antigen (PCNA) and vimentin in PCs from the phosphate-buffered saline (PBS) and hfNCSC-sEVs groups on day 5 of in vitro culture (normalized to β-actin, n = 3 per group). Data are expressed as the mean ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001 (one-way analysis of variance and Tukey’s multiple comparison test for H and I; Student’s t -test for K). The data were from at least three separate and independent studies. CCK-8: Cell counting kit-8; GLUT1: glucose transporter 1; hfNCSCs: hair follicle neural crest stem cells; ns: not significant; PCNA: proliferating cell nuclear antigen; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.
    Rabbit Polyclonal Anti Zo1, supplied by Boster Bio, used in various techniques. Bioz Stars score: 94/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rabbit polyclonal anti zo1/product/Boster Bio
    Average 94 stars, based on 1 article reviews
    rabbit polyclonal anti zo1 - by Bioz Stars, 2026-02
    94/100 stars
      Buy from Supplier

    Image Search Results


    hfNCSC-sEVs are taken up by PCs in vitro and enhance their proliferation and migration. (A) Primary cultures of hfNCSCs were established from male Sprague–Dawley rats. (B) Immunofluorescence staining of the neural crest cell marker p75 (red) and the stem cell marker nestin (green) in hfNCSCs, with 4′,6-diamidino-2-phenylindole (DAPI) staining indicating the nuclei. (C) Western blot analysis demonstrated the presence of surface markers (cluster of differentiation [CD]9, CD81, and tumor susceptibility gene 101 protein [TSG101]) and the absence of an endoplasmic reticulum marker (calnexin) in hfNCSC-sEVs. (D) Nanoparticle tracking analysis was used to quantify the concentration and size distribution of hfNCSC-sEVs. (E) Transmission electron microscopy was used to visualize the characteristic morphology of hfNCSC-sEVs. (F) Immunofluorescence staining indicated that the third-generation PCs cultured in vitro were positive for claudin-1, zonula occludens 1 (ZO1), and glucose transporter 1 (GLUT1) but negative for S100, with DAPI staining marking the nuclei. (G) The internalization of PKH26-labeled hfNCSC-sEVs (red) by ZO1-positive PCs (green) was visualized using immunofluorescence staining, with DAPI staining to mark the nuclei. (H) The Cell Counting Kit-8 assay was used to evaluate the cell viability of PCs across concentrations of 0, 2 × 10 8 , 5 × 10 8 , and 10 × 10 8 particles/mL hfNCSC-sEVs at 3, 5, and 7 days of in vitro culture ( n = 5 per group). (I) The Transwell assay was used to quantify the number of migrating PCs at 6, 12, and 18 hours post-treatment with the aforementioned concentrations of hfNCSC-sEVs, in in vitro culture ( n = 6 per group). (J) Western blot and (K) statistical analyses revealed the relative protein expression levels of proliferating cell nuclear antigen (PCNA) and vimentin in PCs from the phosphate-buffered saline (PBS) and hfNCSC-sEVs groups on day 5 of in vitro culture (normalized to β-actin, n = 3 per group). Data are expressed as the mean ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001 (one-way analysis of variance and Tukey’s multiple comparison test for H and I; Student’s t -test for K). The data were from at least three separate and independent studies. CCK-8: Cell counting kit-8; GLUT1: glucose transporter 1; hfNCSCs: hair follicle neural crest stem cells; ns: not significant; PCNA: proliferating cell nuclear antigen; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.

    Journal: Neural Regeneration Research

    Article Title: Small extracellular vesicles derived from hair follicle neural crest stem cells enhance perineurial cell proliferation and migration via the TGF-β/SMAD/HAS2 pathway

    doi: 10.4103/NRR.NRR-D-25-00127

    Figure Lengend Snippet: hfNCSC-sEVs are taken up by PCs in vitro and enhance their proliferation and migration. (A) Primary cultures of hfNCSCs were established from male Sprague–Dawley rats. (B) Immunofluorescence staining of the neural crest cell marker p75 (red) and the stem cell marker nestin (green) in hfNCSCs, with 4′,6-diamidino-2-phenylindole (DAPI) staining indicating the nuclei. (C) Western blot analysis demonstrated the presence of surface markers (cluster of differentiation [CD]9, CD81, and tumor susceptibility gene 101 protein [TSG101]) and the absence of an endoplasmic reticulum marker (calnexin) in hfNCSC-sEVs. (D) Nanoparticle tracking analysis was used to quantify the concentration and size distribution of hfNCSC-sEVs. (E) Transmission electron microscopy was used to visualize the characteristic morphology of hfNCSC-sEVs. (F) Immunofluorescence staining indicated that the third-generation PCs cultured in vitro were positive for claudin-1, zonula occludens 1 (ZO1), and glucose transporter 1 (GLUT1) but negative for S100, with DAPI staining marking the nuclei. (G) The internalization of PKH26-labeled hfNCSC-sEVs (red) by ZO1-positive PCs (green) was visualized using immunofluorescence staining, with DAPI staining to mark the nuclei. (H) The Cell Counting Kit-8 assay was used to evaluate the cell viability of PCs across concentrations of 0, 2 × 10 8 , 5 × 10 8 , and 10 × 10 8 particles/mL hfNCSC-sEVs at 3, 5, and 7 days of in vitro culture ( n = 5 per group). (I) The Transwell assay was used to quantify the number of migrating PCs at 6, 12, and 18 hours post-treatment with the aforementioned concentrations of hfNCSC-sEVs, in in vitro culture ( n = 6 per group). (J) Western blot and (K) statistical analyses revealed the relative protein expression levels of proliferating cell nuclear antigen (PCNA) and vimentin in PCs from the phosphate-buffered saline (PBS) and hfNCSC-sEVs groups on day 5 of in vitro culture (normalized to β-actin, n = 3 per group). Data are expressed as the mean ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001 (one-way analysis of variance and Tukey’s multiple comparison test for H and I; Student’s t -test for K). The data were from at least three separate and independent studies. CCK-8: Cell counting kit-8; GLUT1: glucose transporter 1; hfNCSCs: hair follicle neural crest stem cells; ns: not significant; PCNA: proliferating cell nuclear antigen; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.

    Article Snippet: The following primary antibodies were used: rabbit polyclonal anti-p75 neurotrophin receptor (p75) antibody (1:100, Cat# 55014-1-AP, Proteintech), mouse monoclonal anti-nestin antibody (1:100, Cat# MAB353, Sigma), rabbit polyclonal anti-claudin-1 antibody (1:250, Cat# 13050-1-AP, Proteintech), rabbit polyclonal anti-ZO1 antibody (1:200, Cat# 21773-1-AP, Proteintech), rabbit polyclonal anti-glucose transporter 1 (GLUT1) antibody (1:500, Cat# 21829-1-AP, Proteintech), rabbit monoclonal anti-S100 antibody (1:800, Cat# MAB353, Abcam), mouse monoclonal anti-neurofilament 200 (NF200) antibody (1:800, Cat# N5389, Sigma), rabbit polyclonal anti-myelin basic protein (MBP) antibody (1:400, Cat# 10458-1-AP, Proteintech), mouse monoclonal anti-β-tubulin antibody (1:1000, Cat# M20005 , Abmart), and rabbit polyclonal anti-HAS2 antibody (1:200, Cat# DF13702, Affinity).

    Techniques: In Vitro, Migration, Immunofluorescence, Staining, Marker, Western Blot, Concentration Assay, Transmission Assay, Electron Microscopy, Cell Culture, Labeling, Cell Counting, Transwell Assay, Expressing, Saline, Comparison, CCK-8 Assay

    hfNCSC-sEVs enhance tube formation and barrier function in PCs and promote tight junction protein expression. (A) Optical micrographs of the tube formation assay and (B) statistical analyses demonstrated the number of junctions and total length of tubes in PCs in both the phosphate-buffered saline (PBS) and hfNCSC-sEVs groups ( n = 5 per group). (C) Measurements of transmembrane resistance ( n = 3 per group) and (D) cell monolayer permeability assays ( n = 9 per group) indicated the barrier formation ability of PCs in both the PBS and hfNCSC-sEVs groups. (E) Western blot and (F) statistical analyses revealed the relative protein expression levels of the tight junction proteins zonula occludens 1 (ZO1) and claudin-1 in PCs from the PBS and hfNCSC-sEVs groups on day 7 of in vitro culture (normalized to β-actin, n = 3 per group). (G, H) Immunofluorescence staining (G) and statistical analyses (H) showed the integrated optical density (IOD) of ZO1 (green) and the expression of β-tubulin (red) in PCs from the PBS and hfNCSC-sEVs groups on day 7 of in vitro culture ( n = 3 per group). (I) Schematic illustration of the rat sciatic nerve defect model: a 5-mm defect was surgically created in the rat sciatic nerve, which was then bridged using a silicon tube, followed by an orthotopic injection procedure. (J) Immunofluorescence staining revealed the expression of claudin-1 (red) in the proximal end of regenerated tissue in both the PBS and hfNCSC-sEVs groups on day 7 post-operation, with 4′,6-diamidino-2-phenylindole (DAPI) staining indicating the nuclei. Data are expressed as the mean ± SEM. * P < 0.05, *** P < 0.001 (Student’s t -test for B, C, D, F, and H). The data were from at least three separate and independent studies. hfNCSCs: Hair follicle neural crest stem cells; IOD: integrated optical density; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.

    Journal: Neural Regeneration Research

    Article Title: Small extracellular vesicles derived from hair follicle neural crest stem cells enhance perineurial cell proliferation and migration via the TGF-β/SMAD/HAS2 pathway

    doi: 10.4103/NRR.NRR-D-25-00127

    Figure Lengend Snippet: hfNCSC-sEVs enhance tube formation and barrier function in PCs and promote tight junction protein expression. (A) Optical micrographs of the tube formation assay and (B) statistical analyses demonstrated the number of junctions and total length of tubes in PCs in both the phosphate-buffered saline (PBS) and hfNCSC-sEVs groups ( n = 5 per group). (C) Measurements of transmembrane resistance ( n = 3 per group) and (D) cell monolayer permeability assays ( n = 9 per group) indicated the barrier formation ability of PCs in both the PBS and hfNCSC-sEVs groups. (E) Western blot and (F) statistical analyses revealed the relative protein expression levels of the tight junction proteins zonula occludens 1 (ZO1) and claudin-1 in PCs from the PBS and hfNCSC-sEVs groups on day 7 of in vitro culture (normalized to β-actin, n = 3 per group). (G, H) Immunofluorescence staining (G) and statistical analyses (H) showed the integrated optical density (IOD) of ZO1 (green) and the expression of β-tubulin (red) in PCs from the PBS and hfNCSC-sEVs groups on day 7 of in vitro culture ( n = 3 per group). (I) Schematic illustration of the rat sciatic nerve defect model: a 5-mm defect was surgically created in the rat sciatic nerve, which was then bridged using a silicon tube, followed by an orthotopic injection procedure. (J) Immunofluorescence staining revealed the expression of claudin-1 (red) in the proximal end of regenerated tissue in both the PBS and hfNCSC-sEVs groups on day 7 post-operation, with 4′,6-diamidino-2-phenylindole (DAPI) staining indicating the nuclei. Data are expressed as the mean ± SEM. * P < 0.05, *** P < 0.001 (Student’s t -test for B, C, D, F, and H). The data were from at least three separate and independent studies. hfNCSCs: Hair follicle neural crest stem cells; IOD: integrated optical density; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.

    Article Snippet: The following primary antibodies were used: rabbit polyclonal anti-p75 neurotrophin receptor (p75) antibody (1:100, Cat# 55014-1-AP, Proteintech), mouse monoclonal anti-nestin antibody (1:100, Cat# MAB353, Sigma), rabbit polyclonal anti-claudin-1 antibody (1:250, Cat# 13050-1-AP, Proteintech), rabbit polyclonal anti-ZO1 antibody (1:200, Cat# 21773-1-AP, Proteintech), rabbit polyclonal anti-glucose transporter 1 (GLUT1) antibody (1:500, Cat# 21829-1-AP, Proteintech), rabbit monoclonal anti-S100 antibody (1:800, Cat# MAB353, Abcam), mouse monoclonal anti-neurofilament 200 (NF200) antibody (1:800, Cat# N5389, Sigma), rabbit polyclonal anti-myelin basic protein (MBP) antibody (1:400, Cat# 10458-1-AP, Proteintech), mouse monoclonal anti-β-tubulin antibody (1:1000, Cat# M20005 , Abmart), and rabbit polyclonal anti-HAS2 antibody (1:200, Cat# DF13702, Affinity).

    Techniques: Expressing, Tube Formation Assay, Saline, Permeability, Western Blot, In Vitro, Immunofluorescence, Staining, Injection

    miR-21-5p in hfNCSC-sEVs augments cell proliferation and migration by enhancing HAS2 expression in PCs. (A, B) Western blot (A) and statistical analyses (B) revealed the relative protein expression levels of HAS2, proliferating cell nuclear antigen (PCNA), and vimentin in PCs across the –/–, –/si- Has2 , hfNCSC-sEVs/–, and hfNCSC-sEVs/si- Has2 groups on day 5 of in vitro culture (normalized to β-actin, n = 3 per group). (C, D) The wound healing assay (C) and statistical analysis (D) demonstrated the migration rates of PCs in the aforementioned groups ( n = 3 per group). (E) The Cell Counting Kit-8 assay was used to assess cell viability in PCs across the same groups on day 5 of in vitro culture ( n = 5 per group). (F, G) Western blot (F) and statistical analyses (G) indicated the relative protein expression levels of HAS2, PCNA, and vimentin in PCs treated with phosphate-buffered saline (PBS), hfNCSC-sEVs, or hfNCSC-sEVs + miR-21-5p inhibitor on day 5 of in vitro culture (normalized to β-actin, n = 3 per group). (H–J) Immunofluorescence staining visualized the expression of HAS2 (red) and 5-ethynyl-2′-deoxyuridine (EdU; green) in PCs (H), and statistical analysis revealed the integrated optical density (IOD) of zonula occludens 1 (ZO1; I) and the cell proliferation rates (J) in the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 5 of in vitro culture ( n = 3 per group). (K, L) Western blot (K) and statistical analyses (L) showed the relative protein expression levels of HAS2, PCNA, and vimentin in regenerated tissue from the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 5 post-operation (normalized to β-tubulin, n = 3 per group). Data are expressed as the mean ± SEM. ** P < 0.01, *** P < 0.001 (one-way analysis of variance and Tukey’s multiple comparison test for B, D, E, G, I, J, and L). The data were from at least three separate and independent studies. CCK-8: Cell counting kit-8; EdU: 5-ethynyl-2′-deoxyuridine; HAS2: hyaluronan synthase 2; hfNCSCs: hair follicle neural crest stem cells; IOD: integrated optical density; PCNA: proliferating cell nuclear antigen; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.

    Journal: Neural Regeneration Research

    Article Title: Small extracellular vesicles derived from hair follicle neural crest stem cells enhance perineurial cell proliferation and migration via the TGF-β/SMAD/HAS2 pathway

    doi: 10.4103/NRR.NRR-D-25-00127

    Figure Lengend Snippet: miR-21-5p in hfNCSC-sEVs augments cell proliferation and migration by enhancing HAS2 expression in PCs. (A, B) Western blot (A) and statistical analyses (B) revealed the relative protein expression levels of HAS2, proliferating cell nuclear antigen (PCNA), and vimentin in PCs across the –/–, –/si- Has2 , hfNCSC-sEVs/–, and hfNCSC-sEVs/si- Has2 groups on day 5 of in vitro culture (normalized to β-actin, n = 3 per group). (C, D) The wound healing assay (C) and statistical analysis (D) demonstrated the migration rates of PCs in the aforementioned groups ( n = 3 per group). (E) The Cell Counting Kit-8 assay was used to assess cell viability in PCs across the same groups on day 5 of in vitro culture ( n = 5 per group). (F, G) Western blot (F) and statistical analyses (G) indicated the relative protein expression levels of HAS2, PCNA, and vimentin in PCs treated with phosphate-buffered saline (PBS), hfNCSC-sEVs, or hfNCSC-sEVs + miR-21-5p inhibitor on day 5 of in vitro culture (normalized to β-actin, n = 3 per group). (H–J) Immunofluorescence staining visualized the expression of HAS2 (red) and 5-ethynyl-2′-deoxyuridine (EdU; green) in PCs (H), and statistical analysis revealed the integrated optical density (IOD) of zonula occludens 1 (ZO1; I) and the cell proliferation rates (J) in the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 5 of in vitro culture ( n = 3 per group). (K, L) Western blot (K) and statistical analyses (L) showed the relative protein expression levels of HAS2, PCNA, and vimentin in regenerated tissue from the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 5 post-operation (normalized to β-tubulin, n = 3 per group). Data are expressed as the mean ± SEM. ** P < 0.01, *** P < 0.001 (one-way analysis of variance and Tukey’s multiple comparison test for B, D, E, G, I, J, and L). The data were from at least three separate and independent studies. CCK-8: Cell counting kit-8; EdU: 5-ethynyl-2′-deoxyuridine; HAS2: hyaluronan synthase 2; hfNCSCs: hair follicle neural crest stem cells; IOD: integrated optical density; PCNA: proliferating cell nuclear antigen; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.

    Article Snippet: The following primary antibodies were used: rabbit polyclonal anti-p75 neurotrophin receptor (p75) antibody (1:100, Cat# 55014-1-AP, Proteintech), mouse monoclonal anti-nestin antibody (1:100, Cat# MAB353, Sigma), rabbit polyclonal anti-claudin-1 antibody (1:250, Cat# 13050-1-AP, Proteintech), rabbit polyclonal anti-ZO1 antibody (1:200, Cat# 21773-1-AP, Proteintech), rabbit polyclonal anti-glucose transporter 1 (GLUT1) antibody (1:500, Cat# 21829-1-AP, Proteintech), rabbit monoclonal anti-S100 antibody (1:800, Cat# MAB353, Abcam), mouse monoclonal anti-neurofilament 200 (NF200) antibody (1:800, Cat# N5389, Sigma), rabbit polyclonal anti-myelin basic protein (MBP) antibody (1:400, Cat# 10458-1-AP, Proteintech), mouse monoclonal anti-β-tubulin antibody (1:1000, Cat# M20005 , Abmart), and rabbit polyclonal anti-HAS2 antibody (1:200, Cat# DF13702, Affinity).

    Techniques: Migration, Expressing, Western Blot, In Vitro, Wound Healing Assay, Cell Counting, Saline, Immunofluorescence, Staining, Comparison, CCK-8 Assay

    miR-21-5p in hfNCSC-sEVs enhances tight junction protein expression in PCs. (A, B) Immunofluorescence staining (A) and statistical analysis (B) demonstrated IOD of ZO1 (green) and the expression of β-tubulin (red) in PCs across the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 7 of in vitro culture ( n = 3 per group). (C) Western blot and (D) statistical analyses revealed the relative protein expression levels of the tight junction proteins ZO1 and claudin-1 in PCs from the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 7 of in vitro culture (normalized to β-actin, n = 3 per group). (E) Immunofluorescence staining depicted the expression of claudin-1 (red) at the proximal end of regenerated tissue in the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 7 post-operation, with DAPI staining highlighting the nuclei. (F, G) Western blot (F) and statistical analyses (G) indicated the relative protein expression levels of ZO1 and claudin-1 in regenerated tissue across the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 7 post-operation (normalized to β-actin, n = 3 per group). Data are expressed as the mean ± SEM. ** P < 0.01, *** P < 0.001 (one-way analysis of variance and Tukey’s multiple comparison test for B, D, and G). The data were from at least three separate and independent studies. DAPI: 4,6-Diamidino-2-phenylindole; hfNCSCs: hair follicle neural crest stem cells; IOD: integrated optical density; PBS: phosphate-buffered saline; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.

    Journal: Neural Regeneration Research

    Article Title: Small extracellular vesicles derived from hair follicle neural crest stem cells enhance perineurial cell proliferation and migration via the TGF-β/SMAD/HAS2 pathway

    doi: 10.4103/NRR.NRR-D-25-00127

    Figure Lengend Snippet: miR-21-5p in hfNCSC-sEVs enhances tight junction protein expression in PCs. (A, B) Immunofluorescence staining (A) and statistical analysis (B) demonstrated IOD of ZO1 (green) and the expression of β-tubulin (red) in PCs across the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 7 of in vitro culture ( n = 3 per group). (C) Western blot and (D) statistical analyses revealed the relative protein expression levels of the tight junction proteins ZO1 and claudin-1 in PCs from the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 7 of in vitro culture (normalized to β-actin, n = 3 per group). (E) Immunofluorescence staining depicted the expression of claudin-1 (red) at the proximal end of regenerated tissue in the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 7 post-operation, with DAPI staining highlighting the nuclei. (F, G) Western blot (F) and statistical analyses (G) indicated the relative protein expression levels of ZO1 and claudin-1 in regenerated tissue across the PBS, hfNCSC-sEVs, and hfNCSC-sEVs + miR-21-5p inhibitor groups on day 7 post-operation (normalized to β-actin, n = 3 per group). Data are expressed as the mean ± SEM. ** P < 0.01, *** P < 0.001 (one-way analysis of variance and Tukey’s multiple comparison test for B, D, and G). The data were from at least three separate and independent studies. DAPI: 4,6-Diamidino-2-phenylindole; hfNCSCs: hair follicle neural crest stem cells; IOD: integrated optical density; PBS: phosphate-buffered saline; PCs: perineurial cells; sEVs: small extracellular vesicles; ZO1: zonula occludens 1.

    Article Snippet: The following primary antibodies were used: rabbit polyclonal anti-p75 neurotrophin receptor (p75) antibody (1:100, Cat# 55014-1-AP, Proteintech), mouse monoclonal anti-nestin antibody (1:100, Cat# MAB353, Sigma), rabbit polyclonal anti-claudin-1 antibody (1:250, Cat# 13050-1-AP, Proteintech), rabbit polyclonal anti-ZO1 antibody (1:200, Cat# 21773-1-AP, Proteintech), rabbit polyclonal anti-glucose transporter 1 (GLUT1) antibody (1:500, Cat# 21829-1-AP, Proteintech), rabbit monoclonal anti-S100 antibody (1:800, Cat# MAB353, Abcam), mouse monoclonal anti-neurofilament 200 (NF200) antibody (1:800, Cat# N5389, Sigma), rabbit polyclonal anti-myelin basic protein (MBP) antibody (1:400, Cat# 10458-1-AP, Proteintech), mouse monoclonal anti-β-tubulin antibody (1:1000, Cat# M20005 , Abmart), and rabbit polyclonal anti-HAS2 antibody (1:200, Cat# DF13702, Affinity).

    Techniques: Expressing, Immunofluorescence, Staining, In Vitro, Western Blot, Comparison, Saline